Chapter 10
Multi-Dimensional Fourier Imaging and Slice excitation

Yongquan Ye, Ph.D. Radiology, Wayne State Univ

#### Previous sessions:

- 1D Fourier transform(Chap.9)
- Spatial encoding (Chap.9)

#### Today's content

- 2D/3D Fourier transform
- Slice selective excitation
- 2D/3D MRI, phase encoding

#### Previous question: why the k-space symmetry?

By definition, k-space is conjugate (Hermitian) symmetric to k=0, i.e.

real 
$$(s(k)) = real(s(-k))$$
  
imag $(s(k)) = -imag(s(-k))$ 

• This symmetry is fully valid only when signal is real, i.e. no phase term for all spins

$$s(k) = \int dz \rho(z) e^{-i\phi(r,t)} e^{-i2\pi kz}$$
$$s(k') = s(k + \frac{\phi(r,t)}{2\pi z})$$

- Using the full k-space can improve SNR over partial k-space
- Since the k-space symmetry is not practically feasible, thus one needs to acquire both + and part of the k-space, though not necessary from  $k_{max}$  to  $+k_{max}$  (e.g. partial Fourier)

# 3D imaging representation

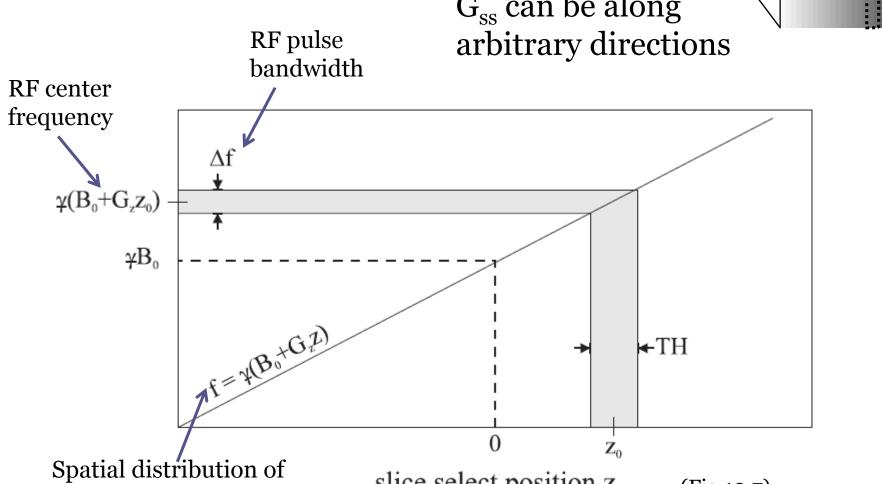
1D: 
$$s(k) = \int dz \rho(z) e^{-i2\pi zk}$$

$$\int \int z \to \vec{r} = (x, y, z)$$

3D: 
$$s(\vec{k}) = \int d^3 \vec{r} \rho(\vec{r}) e^{-i2\pi \vec{r} \cdot \vec{k}}$$

- 1) All dimensions are equal
- 2) k along each direction are determined by the gradient moment in that direction

$$s(k_x, k_y, k_z) = \iiint dxdydz \rho(x, y, z)e^{-i2\pi(k_xx + k_yy + k_zz)}$$


#### Slice Selective Excitation

- For 2D imaging, selectively excite a thin slice of the object is required
- Realized by combination of gradient fields and rf pulse with proper bandwidth and frequency
- Ideally with boxcar excitation, i.e. slice profile is rectangular

#### Slice selection

Note:

G<sub>ss</sub> can be along

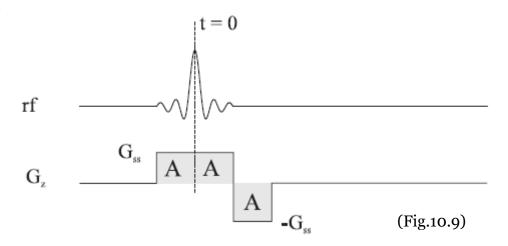


frequency with gradient

slice select position z

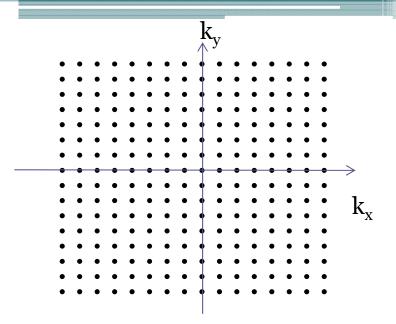
(Fig.10.7)

# Slice profile

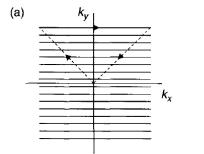

- With a linear gradient, the slice profile resembles the FT of the RF pulse
- To obtain a boxcar slice profile, one needs a infinitely long sinc-shaped RF pulse
- The bandwidth of the sinc pulse can be estimated by the number of its zero crossings

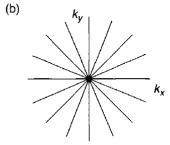
## Slice selection gradient refocusing

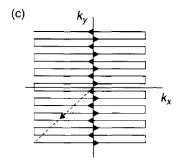
Why the refocusing gradient?

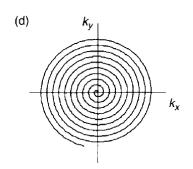

Assumption (Chap. 16.4, low flip angle excitation): Spins are considered instantaneously excited at the center of RF pulse, so that spins are dephased by part of  $G_{\rm ss}$ 

- When and how to do the refocusing?
  - Rule of Thumb
    - Zero sum of gradient moments
    - Do it before data readout
  - Depend on the RF pulse





# 2D k-space


• The goal: Collect every point in the whole k-space




• The means
Use gradients to traverse the k-space  $k_i(t) = \gamma \int G_i(t')dt'$ , i = x, y, z



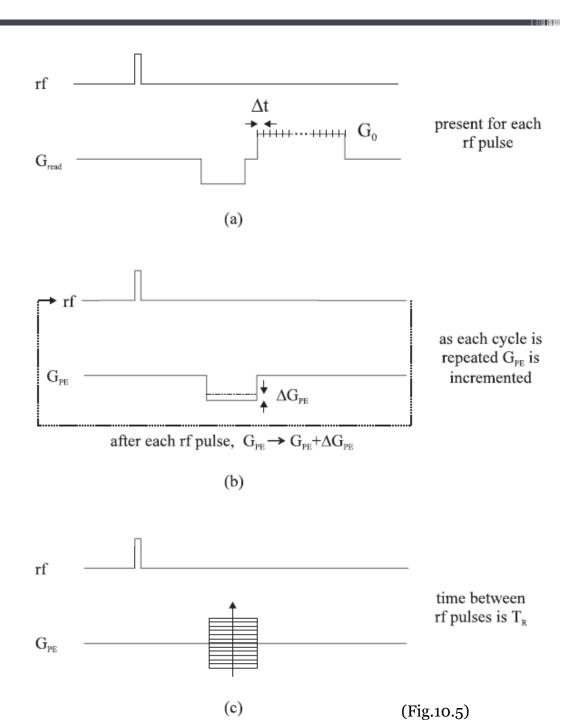






(Bernstein et al, Handbook of MRI Pulse Sequences, Fig.11.6)

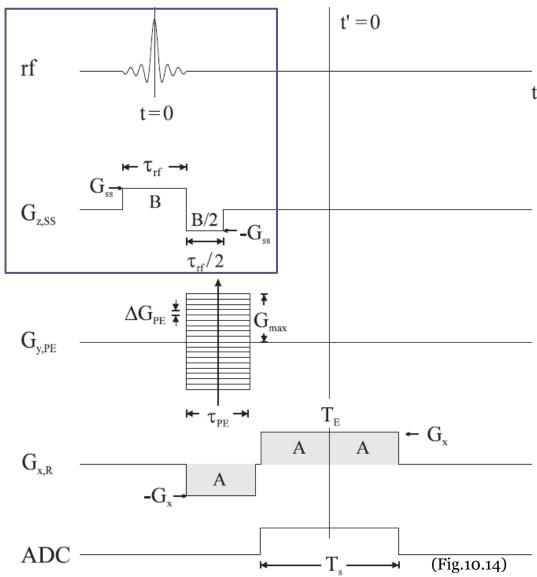
## 2D GE Sequence


#### • In Cartesian k-space:

k<sub>x</sub>: Frequency encoding, or Readout (RO)

$$\Delta k_{x} = \gamma G_{RO} \Delta t$$
$$k_{x} = \gamma G_{RO} \int dt$$

k<sub>y</sub>: Phase encoding, or PE

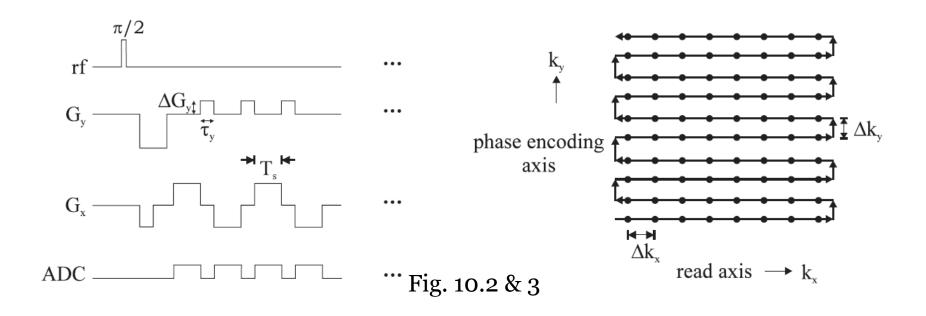

$$\Delta k_{y} = \gamma \Delta G_{PE} \tau$$
$$k_{y} = \gamma G_{PE} \tau$$



2D GE Diagram

Slice selection and rephasing

- Phase encoding, one step in each TR
- Frequency encoding to readout one k<sub>x</sub> line at a time
- Pre-phasing gradient to create the 'echo'




# Phase encoding order (Cartesian)



# 2D Echo Planar Imaging (EPI)

- Slice select the same as GE
- Accumulative PE effects for different echoes (blips)
- Alternating polarity for RO gradients
- Sequence characteristics:
  - Single shot whole k-space acquisition, <3oms/image</li>
  - Sequential k-space filling
  - Heavy T2\* weighting, low resolution, high RO bandwidth

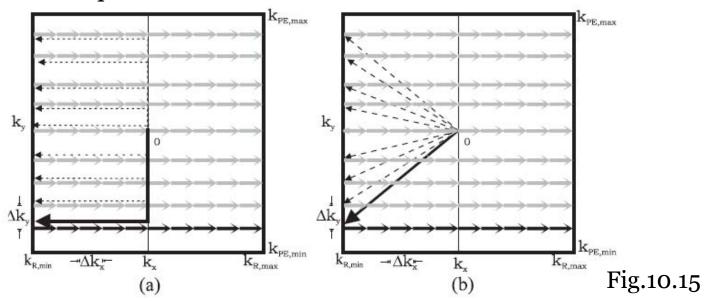


### Phase Encoding vs. Frequency Encoding

- Same in terms of
  - k definition
  - Phase effect to the spins
- Different in terms of
  - Spatial/k direction
  - Acquisition: Discrete vs. continuous
  - $^{\circ}$  Effective acquisition bandwidth: 1/TR vs. 1/T<sub>s</sub>
  - General contribution to scan time (depend on seq types)
     Single echo seq:

RO: min TR/TE PE: total scan time

Single shot seq:


RO+PE: min TR

Multi-shot + multi-echo (segmented) seq:

Complecated

### Phase effects superposition of gradients

- Gradient-only effects are independent and linearly addable in any direction (e.g. PE/RO prephase/SS dephase)
- Such effects are only reflected on the transversal magnetizations
- With other components (e.g. RF pulse), this may not be true
- Make use according to needs (especially when with RF pulse, ADC and directional requirements)



# Multi-slice 2D imaging

- Same G<sub>ss</sub> but varying RF center frequency
- Slice gap is usually needed due to imperfect RF frequency profiles
- What is the TR here? (using the dead time)

(Hint: TR can be defined as the interval between Readouts for the same slice)

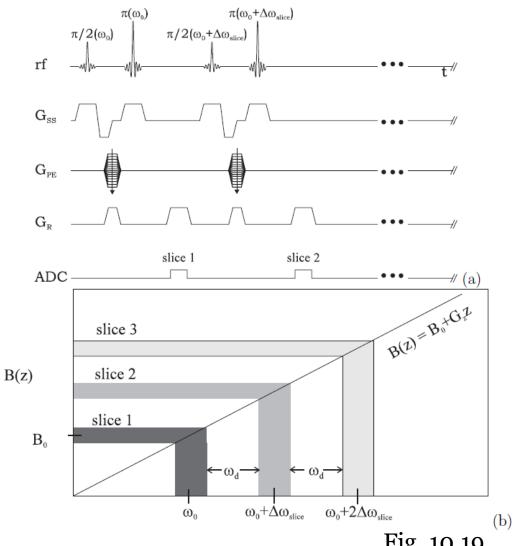



Fig. 10.19

# 3D Volumetric Imaging

- Additional PE along slice selection
- Volumetric excitation (slab instead of slice)
- 3D iFFT
- Pros (vs. multi-slice 2D):
  - High resolution on SS dimension
  - High SNR
- Cons (vs. multi-slice 2D):
  - Longer scan time
  - Min slice# per slab for FFT
  - Sensitive to motion

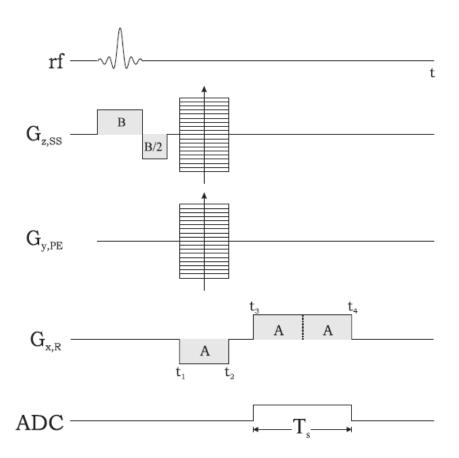
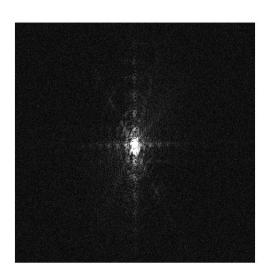
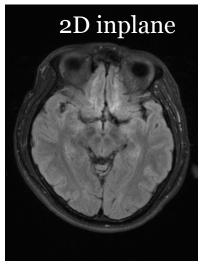
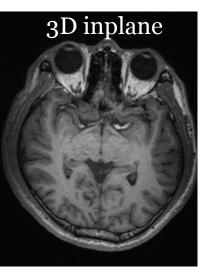
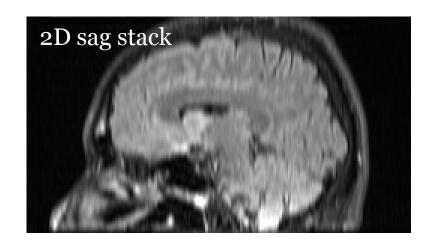
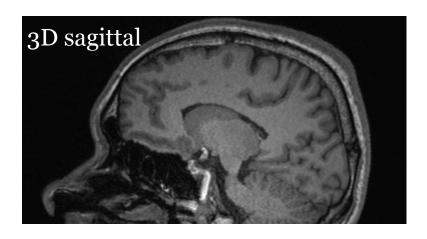




Fig.10.18


#### Multi-slice 2D vs. 3D


- Excitation: Slice selective vs. slab selective
- Within TR: Multiple excitation vs. single excitation
- Reconstruction I: No recon over SS vs. FFT along SS (or partition)
- Reconstruction II: Capable of single slice vs. not
- Slice resolution: Low (thick slice, >2mm) vs. High (thin slice, down to 0.5mm)
- SNR:  $N_z$  times lower noise in 3D than 2D (Chap. 15)


# Examples




2D k-space









## Homework

• Probs. 10.1 - 10.4, 10.7

### **Next Session**

Chapter 11 and 12.1-12.2